Telegram Group & Telegram Channel
Какой слой в gpt обрабатывает выход трансформера и как он работает?

В архитектуре GPT (Generative Pre-trained Transformer) слой, который обрабатывает выход трансформеров, называется "декодирующим слоем" или "генеративным слоем".

Этот слой работает следующим образом:
1. Составление вероятностного распределения слов: Для генерации текста декодирующий слой принимает выходные данные из трансформера, которые представляют собой скрытое состояние, кодирующее информацию о контексте. Декодирующий слой преобразует это скрытое состояние в вероятностное распределение над возможными словами в словаре.
2. Генерация слов: На основе вероятностного распределения декодирующий слой выбирает следующее слово для генерации. Это может быть выполнено с использованием методов выбора, таких как сэмплирование согласно вероятностям или выбор наиболее вероятного слова.
3. Обратная связь: Сгенерированное слово добавляется к предыдущему контексту, и этот расширенный контекст возвращается на вход декодирующему слою. Это позволяет модели учитывать уже сгенерированный текст при принятии решения о следующем слове.
4. Повторение: Процесс генерации слов повторяется до достижения определенной длины текста или до выполнения некоторого условия завершения, такого как генерация специального символа конца текста.
5. Обучение: Декодирующий слой обучается на парах вход-выход на больших текстовых корпусах. Обучение включает в себя подбор параметров так, чтобы модель максимизировала вероятность правильной генерации текста.



tg-me.com/ds_interview_lib/44
Create:
Last Update:

Какой слой в gpt обрабатывает выход трансформера и как он работает?

В архитектуре GPT (Generative Pre-trained Transformer) слой, который обрабатывает выход трансформеров, называется "декодирующим слоем" или "генеративным слоем".

Этот слой работает следующим образом:
1. Составление вероятностного распределения слов: Для генерации текста декодирующий слой принимает выходные данные из трансформера, которые представляют собой скрытое состояние, кодирующее информацию о контексте. Декодирующий слой преобразует это скрытое состояние в вероятностное распределение над возможными словами в словаре.
2. Генерация слов: На основе вероятностного распределения декодирующий слой выбирает следующее слово для генерации. Это может быть выполнено с использованием методов выбора, таких как сэмплирование согласно вероятностям или выбор наиболее вероятного слова.
3. Обратная связь: Сгенерированное слово добавляется к предыдущему контексту, и этот расширенный контекст возвращается на вход декодирующему слою. Это позволяет модели учитывать уже сгенерированный текст при принятии решения о следующем слове.
4. Повторение: Процесс генерации слов повторяется до достижения определенной длины текста или до выполнения некоторого условия завершения, такого как генерация специального символа конца текста.
5. Обучение: Декодирующий слой обучается на парах вход-выход на больших текстовых корпусах. Обучение включает в себя подбор параметров так, чтобы модель максимизировала вероятность правильной генерации текста.

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/44

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The Singapore stock market has alternated between positive and negative finishes through the last five trading days since the end of the two-day winning streak in which it had added more than a dozen points or 0.4 percent. The Straits Times Index now sits just above the 3,060-point plateau and it's likely to see a narrow trading range on Monday.

A project of our size needs at least a few hundred million dollars per year to keep going,” Mr. Durov wrote in his public channel on Telegram late last year. “While doing that, we will remain independent and stay true to our values, redefining how a tech company should operate.

Библиотека собеса по Data Science | вопросы с собеседований from id


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA